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We present the analytical description of the anomalous Hall effect �AHE� in a two-dimensional electron gas
�2DEG� ferromagnet within the Keldysh formalism. These results unify the three linear-response approaches to
AHE and close the debate on previous discrepancies. We are able to identify a new extrinsic AHE regime
dominated by a hybrid skew scattering mechanism. This new contribution is inversely proportional to the
impurity concentration, resembling the normal skew scattering, but independent of the impurity strength,
resembling the side-jump mechanism. Within the Kubo formalism this regime is captured by higher order
diagrams which, although weak, can dominate when both subbands are occupied; this regime can be detected
by variable remote doping experiments.
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The anomalous Hall effect �AHE� has been a subject of
fundamental research in condensed matter physics for many
decades. The anomalous Hall resistivity �xy describes the
transverse voltage with respect to the transport direction and
depends on the spontaneous magnetization M along the z
direction. The origin of the AHE lies in the intrinsic band-
structure properties,1 and extrinsic spin-asymmetric scatter-
ing such as skew scattering2 and side-jump scattering.3

Even though the AHE has been studied for a long time,4 it
still remains a controversial theoretical subject due to the
difficulty in obtaining agreement between the different linear
response calculations within equivalent systems.5–11 Re-
cently, some consensus has been reached between the dia-
grammatic Kubo formalism10 and the Boltzmann approach.9

Application of the Keldysh formalism to the problem is rela-
tively new6,7 and connection to the previous theories is re-
quired. Liu et al.6 employ this approach but fail to reproduce
the diagrammatic results10 because the gradient expansion of
the collision integral is not taken into account.9 Onoda et al.7

use the Keldysh technique formulated in a gauge invariant
way; however, employment of the nonchiral basis represen-
tation lacks transparency and only allows for a numerical
solution.

In this Rapid Communication, we derive the kinetic equa-
tion that takes into account both the effects of the Berry
curvature and the extrinsic effects. We solve the quantum
Boltzmann equation analytically in the metallic �weak scat-
tering� regime, finding the Hall current up to zeroth order in
the impurity strength. Employing the chiral basis allows us
to immediately identify semiclassical contributions9 such as
intrinsic, side-jump and skew scattering and therefore make a
systematic derivation of the Boltzmann semiclassical ap-
proach. We also make a full connection to the results of the
previous works using the Kubo formalism,8–10,12 hence
bringing to an end the long-standing theoretical debate
within the weak scattering regime. In addition, we calculate
the important higher order �hybrid� skew scattering dia-
grams. In the limit of high density and mobility, this hybrid
skew scattering contribution dominates in the metallic re-
gime and surprisingly has no dependence on the scattering

strength but it is inversely proportional to the impurity con-
centration.

The method presented in the following is general, how-
ever, in order to obtain simple analytical results that connect
directly with other microscopic linear response calcu-
lations,8–10 we restrict ourselves to a 2D Rashba Hamiltonian
with additional exchange field h:

ĤR = �� 2/2m + ��� · �̂ � z − h�̂z + V�r� , �1�

where �̂ are Pauli matrices, �� =k−eA, A�t�=−Et describes
the external electric field and V�r� the impurities. Here and
throughout the text we take �=c=1. We employ a simplified
model of impurity scattering, particularly V�r�=V0�i��r
−ri�, where ri describes the positions of randomly distributed
impurities. We also estimate the spin-orbit coupling compo-
nent of the disorder potential and show to be important only
in the very high-density regime.16,17

We start by writing the Dyson equation,15

��Ĝ0
R�−1 − 	̂R − 	̂K

0 �Ĝ0
A�−1 − 	̂A

� � �ĜR ĜK

0 ĜA
� = 1̌, �2�

where R, A, and K stand for retarded, advanced and Keldysh
components of the Green’s functions and self-energies, and
the subscript 0 labels the disorder free system. The symbol �

denotes a convolution �in position, time and spin�. By con-
sidering Eq. �2� and its conjugate, we arrive at the kinetic
equation,15

�Ĝ0
R�−1

� Ĝ
 − Ĝ

� �Ĝ0

A�−1

= 	̂R
� Ĝ
 − Ĝ


� 	̂A + 	̂

� ĜA − ĜR

� 	̂
, �3�

where Ĝ
 / 	̂
��ĜK / 	̂K+ ĜA / 	̂A− ĜR / 	̂R� /2. The iterative
version of Eq. �2� corresponding to the repeated scattering by

impurities is 	̌=	0
ˇ � �1̌+ Ǧ � 	̌�, where 	0

ˇ is the self-energy
from a single scattering event in Keldysh space. The Keldysh
component of this equation gives the relation
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	̂
 = �1 + ĜR
� 	̂R� � 	̂0



� �1 + 	̂A

� ĜA�

+ 	̂R
� Ĝ


� 	̂A, �4�

where for a single scattering event we have 	̂0

=0. Equa-

tions �3� and �4� form a general closed set of equations for

Ĝ
 and are solved in the following.
In the presence of slowly varying perturbations, it is use-

ful to perform the Wigner transformation, viz., the center-of-
mass coordinates �X= �R ,T�� and the Fourier transform with
respect to the relative coordinates �k= �k ,���. In such repre-
sentation, the convolution of two operators is approximated

as Â � B̂	 ÂB̂+ i
2 ��XÂ�kB̂−�kÂ�XB̂�, where we use the four

vector notations �X�k=�R�k−�T̃�� and �T̃=�T+eE�k. Apply-
ing this to kinetic Eq. �3� we obtain

�Ĥ0,Ĝ
� +
i

2

eE�̂0,��Ĝeq


 � + ieE�kĜeq



= 	̂RĜ
 − Ĝ
	̂A + 	̂
ĜA − ĜR	̂


+
i

2
��	̂R,Ĝeq


 �p − �Ĝeq

 ,	̂A�p + �	̂eq


 ,ĜA�p − �ĜR,	̂eq

 �p� ,

�5�

where �Â , B̂�p���XÂ�kB̂−�kÂ�XB̂�, �̂0=�kĤ0, Ĝeq

 =nF�ĜA

− ĜR� and 	̂eq

 =nF�	̂A− 	̂R�. In deriving Eq. �5�, one retains

only the first-order terms in electric field E and use the fact

that our system is homogeneous and stationary ��RĜ
=0,

�TĜ
=0�.
To establish the connection with the several mechanisms

identified semiclassically when interpreting the AHE, we

transform Eq. �5� into the chiral basis in which Ĥ0 takes the

diagonal form Ŝ†Ĥ0Ŝ=1̂k2 /2m− �̂z� , �̂= Ŝ†�̂0Ŝ, and

Ŝ = � cos 
/2 sin 
/2
iei� sin 
/2 − iei� cos 
/2 � ,

where �=���k�2+h2, cos�
�=h /� and tan���=ky /kx. We
first obtain the intrinsic Hall effect by disregarding the colli-
sion integral in the right-hand side of Eq. �5�. In the chiral

basis, only nondiagonal terms of Ĝ
 give nonzero contribu-
tions to the intrinsic AHE and they are

G+−
c
 = ieE
i�y

+−���nF�A+ + A−��/2

+ �G+
RG−

R − G+
AG−

A��y
+−nF�/2� ,

G−+
c
 = − ieE
i�y

−+���nF�A+ + A−��/2

+ �G+
RG−

R − G+
AG−

A��y
−+nF�/2� , �6�

where G�
R�A�=1 / ��−E�+ �−�i��

����, ��=���zh / � , E�

=k2 /2m��, A�= i�G�
R −G�

A � and Ĝc
 is Ĝ
 in the chiral
basis �� and �z are defined below; however, they do not
affect the intrinsic current in the vanishing � limit�. The

Green’s function Ĝc
 allows us to find the intrinsic Hall
current along the x axis:

jx = − ie
 d2k

�2��2

d�

2�
Tr�Ĝc
�̂x�

= − ie2E
 d2k

�2��2

d�

2�
nF

��y
+−�x

−+ − �y
−+�x

+−��A+ − A−�
4�2 �7�

=E
e2

4�
�1 −

h

�−
− �1 −

h

�+
�
��F − h�� , �8�

where ��=���k��2+h2 and k�
2 =2m��F���� describe

Fermi vectors for the lower/upper chiral bands.
The intrinsic solution Eq. �6� contains both the contribu-

tion at the Fermi level and from the Fermi sea, often referred
to as �xy

II conductivity within the Kubo-Streda formalism.
Our next aim is to find the contributions that arise due to
impurity scattering at the Fermi level. We separate Eq. �5�
into two parts, one is proportional to nF and the other is
proportional to ��nF. The part proportional to ��nF, i.e., the
Fermi surface, is

�Ĥ0,Ĝ
� −
��nF

2

eE�̂0,Â� = 	̂RĜ
 − Ĝ
	̂A + 	̂
ĜA

− ĜR	̂
 −
��nF

2
��̂�kĜA + �kĜR�̂

− Â�k	̂A − �k	̂RÂ� , �9�

where Â= i�ĜR− ĜA� and �̂= i�	̂R− 	̂A�. Note that �k	̂R�A�

=0 for the simple delta scatterers. We calculate 	̂R�A�
 and

Green’s functions ĜR�A� using the T-matrix approximation up
to ni-linear terms �in the Pauli basis�,10

	̂R�A� = niV0
2�̂����1 − V0�̂����−1 � � i������̂0 + �z

����̂z� ,

�10�

	̂
 = niV0
2
 d2k

�2��2 �1 − V0�̂�−1Ĝ
�1 − V0�̂��−1, �11�

where �̂=�d2k / �2��2ĜR���̂0+�z�̂z, ĜR= ��1̂− Ĥ0− 	̂R�−1,
with �=� r+ i� i, �z=� z

r+ i� z
i , and calculated up to the lowest

order:

� r =
m

4�
ln

�h2 − �F
2 �

k0
4/4m2 +

�2 ln�k+
2/k−

2�
��k+

2 − k−
2�/m3 ; � i = −

�− + �+

4
;

� z
r =

h ln�k+
2/k−

2�
��k+

2 − k−
2�/m2 ; � z

i =
h

4
� �+

�+
−

�−

�−
� ,

where ��=
m��

����2m
, �+=0 when �F
h,

�+

�+
=

�−

�−
when �F�h

and k0 being the cutoff in the integration over the k vector.
Note that we use the renormalizations �F→�F−Im � and
h→h−Im �z in Eqs. �9� and �11� which allows us to have
purely imaginary self-energies 	R�A�. However, real parts � r

and � z
r still appear in 	̂
 in Eq. �11�.

In order to find the current in Eq. �7� up to zeroth order in
V0, we transform all elements of Eqs. �9� and �11� into the
chiral basis and solve the kinetic equation up to zeroth order
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in V0. That solution is used to solve the diagonal components
of the kinetic equation up to the second order in V0. Note that

the expansion of Ĝ+−/−+
c
 starts from zero-order terms in V0

�see Eq. �6��, while the expansion of Ĝ++/−−
c
 starts from terms

proportional to V0
−2 which means that we only need to solve

the nondiagonal components of the chiral kinetic equation up
to zeroth order in V0 while the diagonal components of the
kinetic equation has to be solved up to the second order.

We find different components of Ĝc
= Ĝeq
c
+ Ĝint

c
+ Ĝ�−2�
c


+ Ĝsj
c
+ Ĝsk

c
 in the range �i� −h
�F
h when only “−” chi-
ral band is crossed by the Fermi level. The intrinsic contri-
bution is already included in Eq. �8� and its Fermi-level part

is Ĝint
c
=−iE��nFA−� � cos �

4�−
�̂x− h� sin �

4�−
2 �̂y�. By solving the di-

agonal components of the kinetic equation up to zeroth order

in V0, we obtain the part of Ĝc
 proportional to V0
−2:

Ĝ�−2�
c
 = − iE��nFA−4�−

2k− sin �

niV0
2�−

2�−
2 �̂−−,

where ��=���k��2+4h2 and �̂−−/++= ��̂0��̂z� /2. By solv-
ing the nondiagonal components of the kinetic equation up to
zeroth order in V0, we obtain the nondiagonal elements of the
side-jump contribution:

Ĝsj
c
 =

E��nF�k−
2

�−
� �G−

A + G−
R���−�̂y cos � − h�̂x sin ��

4�−�−
2

+
iA−��−�̂x cos � + 3h�̂y sin ��

4�−�−
2 +

2iA−h cos ��̂−−

�−
2 � ,

�12�

while the diagonal contributions of side jump are found by
considering the diagram �a� in Fig. 1 and by solving the
diagonal components of the kinetic equation up to the second
order in V0. By considering the diagrams �b�–�f� in Fig. 1 and
by solving the diagonal components of the kinetic equation
up to the second order in V0, we obtain the skew scattering
contribution �the last term corresponds to the diagram �a� and
the disorder-independent skew scattering13�,

Ĝsk
c
 = iE��nFA−� 8�

nimV0
−

8� i

nimV0
tan �

+
32�2k−

2� r� z
i

ni�−
2 +

3h�−

�−
2 ��2k−

3�−
2

�−
4�−

2 �̂−− cos � , �13�

where �= �
V1

3

V0
3 � z

i +
V2

4

V0
3 �3� r� z

i +� i� z
r��. Using Eq. �7�, we arrive

at the Hall conductivity,14

�xy = �xy
II +

e2

4�
�h�2�−

�−
2 −

4hk−
2�2

�−�−
2 +

3hk−
4�2

�−
4�−

+
8k−

4�2�−
2

niV0�−
4�−

2�� +
4k−

2�2� r� z
i

�−
2m

V1
6

V0
5�� , �14�

where �xy
II = e2

4� �1− h
��4+�F

2 � and �F=�h2+2�2m�F. In Eqs.

�13� and �14� we have made a straightforward generalization
to a more general model of disorder: V�r�=�iV0

i ��r−ri� with
ri random and strength distributions satisfying �V0

i �dis=0,
��V0

i �2�dis=V0
2, ��V0

i �3�dis=V1
3 and ��V0

i �4�dis=V2
4. For the disor-

der described after Eq. �1�, we have V0=V1=V2 and for the
white-noise disorder we have V1=0. Note that this result
reduces to the Kubo formalism result of Ref. 10 when the
last term bracket is calculated up to zeroth order in the
strength of the disorder.

We repeat the same procedure in the range �ii� h
�F
when both chiral bands are partially occupied. By using Eq.
�7�, within this limit we obtain that the intrinsic and side-
jump contributions cancel each other, in agreement with
Refs. 8–10, the Fermi sea contribution vanishes ��xy

II =0�
from Eq. �6�, and the Hall conductivity is only nonzero for
the higher order skew scattering arising from diagrams �d�–
�f�:

�xy =
2e2�2

�niV0
� = −

V2
4

niV0
4

e2h�2 ln�k−
2/k+

2�
�2�k−

2 − k+
2�

. �15�

This contribution from the higher order diagrams �d�–�f� was
not considered in prior calculations within the Kubo
formalism8,10 and only discussed without being calculated in
Ref. 9. We have also used the numerical procedure of Onoda
et al.7 to verify this analytical result that identifies this new
extrinsic regime in the two-dimensional electron gas �2DEG�
with Rashba. Although the contribution in this regime is pro-
portional to 1 /ni it does not depend on V0 as V0

−1, as it is
usual for the skew scattering. The result in Eq. �15� can be
understood within the Boltzmann approach by writing the
scattering rates in the chiral basis,

�����k,k�� =
2�

�
niTc

R�k,k�����Tc
A�k�,k�������k − �k�� ,

�16�

where T̂c
R�A��k ,k��= Ŝ†�k��1−V0�̂����−1Ŝ�k��. The asymmetric

part with respect to k, k� in Eq. �16� is responsible for the
skew scattering and is proportional to niV0

3�. Consequently,
the Hall current should be proportional to

FIG. 1. �Color online� Diagrams representing the averaging pro-

cedure in calculating 	̂
 in Eq. �11� where the upper part of the plot

corresponds to 	̂A and the lower part corresponds to 	̂R. The dia-
gram �a� leads to the side-jump contribution and the disorder-
independent skew scattering �Ref. 13�, the diagrams �b� and �c� lead
to conventional skew scattering, and the diagrams �d�, �e� and �f�
lead to the higher order skew scattering.
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�xy
skew � niV0

3����
tr �2 �

niV0
3�� z

i + V0�3� r� z
i + � i� z

r��
�niV0

2�2 ,

where ��
tr is the transport time for the � chiral bands. The

conventional skew scattering �V0
−1 order� appears due to the

difference in the lifetime for the � chiral bands given by � z
i .

However, for the Rashba model when both subbands are par-
tially occupied we have � z

i =0. In this limit, the asymmetry in
the scattering still appears due to the difference in the Fermi
energy renormalization for the � chiral bands given by � z

r

and leads to a V0 independent contribution proportional to
1 /ni.

In Fig. 2, we plot the anomalous Hall conductivity as a
function of the Fermi energy �F and the spin-orbit coupling
� for attractive impurities �V0
0�. We take typical param-
eters corresponding to high quality 2DEG samples: The car-
rier concentration is in the range 1011 cm−2, the maximum
spin-orbit coupling is 5�10−11 eVm and the mobilities are
12 and 60 m2 /Vs. In the inset of Fig. 2 we analyze the
importance of the extrinsic skew scattering caused by the
impurity induced spin-orbit interaction HSO=�����V� ·k
��=0.052 nm2 for GaAs �Ref. 16�� that is always present in
realistic systems. For the estimate we use the corresponding

Hall conductivity,17 �xy
1 = e2�

16niV0
��−k−

4 −�+k+
4�. This conductiv-

ity becomes important for larger carrier concentrations and
there should be a region of crossover between the hybrid
skew scattering and the extrinsic skew scattering �some in-
terference between the two effects may take place�. In the
limit �i� ��F
h�, we observe skew scattering behavior ��xy

�1 /niV0� when the inverse Born scattering amplitude �
=1 /niV0

2m�1 /�F ��F is the Fermi energy measured from the
bottom of the band�. For smaller �, all curves have
asymptotic behavior reaching a sum of side-jump and intrin-
sic contributions as it can be seen from Eq. �14� which rep-
resents the crossover between the intrinsic-side-jump and ex-
trinsic anomalous Hall effect. In the transition region to the
limit �ii� ��F�h�, we observe a sudden drop of the Hall
conductivity �see Fig. 2� with a sign change. The hybrid
skew scattering should be observable in samples with dop-
ants situated closer to the 2DEG to maximize the impurity
strength as it can be seen from the inset of Fig. 2. Onoda et
al.7 analyze the region of ��F�1, finding �xy ��xx

1.6 scaling.
This region is beyond applicability of our results which rely
on the weak scattering limit ��F�1, since our approxima-
tions ignore the corrections to the conductivity �1 /��F and
the gradient expansion in this regime is not fully justified.

Summarizing, we analytically calculate the anomalous
Hall current in a 2DEG ferromagnet with spin-orbit interac-
tion using the Keldysh formalism. Complete agreement to
the Kubo formula approach and to the Boltzmann equation
approach is obtained. By considering the higher order skew
scattering diagrams, we are able to calculate a Hall current
due to a hybrid skew scattering mechanism which is domi-
nant when both subbands are partially occupied or when the
system has white-noise disorder. This particular Hall current
does not depend on the impurity sign and strength.
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